

Reg. No. :

Name:

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT 2C 06 – Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- 1. Prove that $\mathbb{Z}[i]$ is an Euclidean domain.
- 2. Construct a field of four elements by showing $x^2 + x + 1$ is irreducible in $\mathbb{Z}_{2}[x]$.
- 3. Show that it is not always possible to construct with straight edge and compass, the side of a cube that has double the volume of original cube.
- 4. Show that if F is a finite field of characteristic p, then the map σ_p : F \to F defined by $\sigma_n(a) = a^p$, for $a \in F$, is an automorphism.
- 5. Prove that there exists only an unique algebraic closure of a field up to isomorphism.
- 6. If E is a finite extension of F, Then prove that {E: F} divides [E: F]. (4×4=16)

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

UNIT - I

7. a) State and prove Kronecker's theorem.

- 8
- b) Prove that \mathbb{Q} $(\pi) \cong \mathbb{Q}(x)$, where $\mathbb{Q}(x)$ is the field of rational numbers over \mathbb{Q} .
- c) Prove that $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{R}(i)\cong \mathbb{C}$.

4

8

4

8. a) Prove that if D is a UFD, then D[x] is a UFD.

3

b) Show that not every UFD is a PID.

3

c) Express $18x^2 - 12x + 48$ in $\mathbb{Q}[x]$ as a product of its content with a primitive polynomial.

5

K22P 0189

- 9. a) Prove that for a Euclidean domain with Euclidean norm v, v(1) is minimal among all v (a) for non-zero $a \in D$, and also $u \in D$ is a unit if and only if. v(u) = v(1).
 - b) Let p the an odd prime in \mathbb{Z} . Then prove that $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$, if and only if $p \equiv 1 \pmod{p}$.

UNIT - II

- 10. a) Prove that there exists finite of pⁿ elements for every prime power pⁿ.
 - b) Let p be a prime and $n \in \mathbb{Z}^+$. Prove that if E and E' are fields of order p^n , then $E \cong E'$.
- 11. a) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{5},2)$ and $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} .
 - b) Prove in detail that $\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.
 - c) Define algebraic closure of a field and prove that, a field F is algebraically closed if and only if, every non constant polynomial in F[x] factors in F[x] into linear factors.
- 12. a) Describe the group $G(\mathbb{Q}\sqrt{2},\sqrt{3}/\mathbb{Q})$.
 - b) Let F be a field and let α , β are algebraic over F. Then prove that F $(\alpha) \cong F(\beta)$ if and only if α and β are conjugates over F.
 - c) Let $\{\sigma_i/i\in I\}$ be the collection of automorphisms of a field \overline{F} . Then prove that the set $E_{\{\sigma_i\}}$ of all $a \in E$ left fixed by every σ_i for $i \in I$, forms a subfield of E.

UNIT - III

- 13. a) Prove that a finite separable extension of a field is a simple extension.
 - b) Every finite field is perfect.
- 14. a) Show that [E:F] = 2, then E is splitting field over F.
 - b) Show that if $E \le \overline{F}$, is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.
 - c) Find the splitting field and its degree over $\mathbb Q$ of the polynomial $(x^2-2)(x^3-2)$ in $\mathbb{Q}[x]$.
- 15. a) Let K be a finite extension of degree n of a finite field F of pr elements. Then G(K/F) is cyclic of order n and is generated by σ_{p}^{r} , for $\alpha \in K$, $\sigma_{p}^{r}(\alpha) = \alpha^{p'}$.
 - b) State isomorphism extension theorem.
 - c) Let f(x) be irreducible in F[x]. Then prove that all zeros in f(x) in \overline{F} has same multiplicity.